< 105 older entriesHome676 newer entries >

I Got Hit On The Battleground God

Battleground God says that there are three contradictions in my views about God. Of course I don't believe my views are contradictory. Here are the alleged contradictions:

First, I accepted both of the following as true:

4. Any being which it is right to call God must want there to be as little suffering in the word as is possible.
12. If God exists she could make it so that everything now considered sinful becomes morally acceptable and everything that is now considered morally good becomes sinful.

Is this a contradiction? I'm not quite sure whether (12) is an indicative or a subjunctive conditional, but I think if it was subjunctive it would have to go "If God existed ..." or "If God would exist ...". So I think it's meant to be indicative (in the sense of "If God exists, then it is the case that: She could ..."). Like most people, I find it difficult to evaluate indicative conditionals with false antecedents, but at least for today I felt like embracing the Grice-Jackson-Lewis view that they are true. The website complained that I "say that God could make it so that everything now considered sinful becomes morally acceptable". But that's not what I said!

Postbote Update

I've fixed a couple of (five, to be precise) problems in Postbote.

What does Russell's Paradox Teach in Semantics?

On Friday, I wrote:

Conclusion 2: If we want to avoid Bradley's regress, there is no reasonable way to defend the principle that every meaningful expression of our language has a semantic value. (Russell's paradox is an independent argument for the same conclusion.)

Today, I was trying to prove the statement in brackets. This is more difficult than I had thought.

Semantic paradoxes usually (always?) arise out of an unrestricted application of schemas like

English Sentences

Friends who know English better than I often tell me that when I write English, my sentences get too long and complicated. So I noticed with considerable relief this resolution from the University at Buffalo on open source software.

Frege's Semantics and Bradley's Regress

Frege believes that predicate expressions have semantic values (Sinne and Bedeutungen) which can't be denoted by singular terms. Hence "the Bedeutung of 'is a horse'" does not denote the Bedeutung of 'is a horse'. Before the discovery of Russell's paradox, the only reason he ever gave for this view -- apart from claiming that it is a fundamental logical fact that just has to be accepted -- is that otherwise the semantic values of a sentence's constituents wouldn't "stick together". The more I think about this reason, the less convincing I find it.

Whitespace

That new Whitespace programming language looks fun. It uses only three different whitespace characters. So I've been thinking about a possible language with just a single character. The only information contained in the source code of such a program would be the code's string length. The compiler would have to read all instructions from the properties of this number, e.g. its digits, its prime factors, etc. I couldn't come up with anything that looks even remotely feasible though. (The cheap trick of course is to interpret the string length as the Gödel number of some C code.)

Time to Move

The war and the Spring, that broke out almost simultaneously, both distract me from philosophy. I also have to think about where to go when I move out of my flat in about two weeks time. Should I stay in Berlin and enjoy another cheap and relaxed summer, or should I rather go to Bielefeld and enjoy some reasonable philosophy? Unfortunately, in Germany the quality of philosophy departments is inversely proportional to the attractiveness of the cities where they are located.

Could Frege's Ontology be a Henkin Model?

Frege uses second-order quantification in both his formal and informal works. So far, I have always assumed that his second-order logic is standard second-order logic. But couldn't it also be second-order logic with Henkin semantics, which would in fact be a kind of first-order logic (compact, complete and skolem-löwenheimish)? Unfortunately, I know far too little about second-order logic to answer this question.

Are there any second-order statements that are satisfiable in standard semantics, but not in Henkin semantics? (I guess there must be: Wouldn't second-order logic with standard semantics have to be complete otherwise? Not sure.) If so, do any of Frege's theorems belong to these?

Questions about Imaginative Resistance

I've finished the exercises. I still have to put together some of the solutions, but since Word always crashes when I draw complicated tables and trees, I've decided to take a break in order to save my mental health. (In fact, Word not only crashes frequently in these cirumstances, it also deletes the currently open file while crashing.) So now I'm working on the Frege paper again, which I really want to finish soon.

Brian Weatherson has posted a couple of interesting entries on imaginative resistance.

Exercises and Puzzles II

I've finally managed to introduce the provability predicate and its properties without mentioning representability and recursiveness. The exercise is then to derive Löb's theorem and Gödel's incompleteness theorems. Unfortunately these deductions are not as simple as I thought they were. Probably too difficult for an introductory book.

I've also just made up this puzzle, which is not very difficult I think. ("Not very difficult" even in the ordinary sense of "not very difficult", not only in the David Chalmers sense.)

< 105 older entriesHome676 newer entries >