< 776 older entriesHome7 newer entries >

General ability as generic ability?

Ability modals have a "specific" and a "general" reading. If a pianist is locked in a piano-free cell, they can play the piano in the general sense, but not in the specific sense. Roughly, an agent has the "general ability" to φ if they have the internal constitution required to φ. They have the "specific ability" to φ if, in addition, the external circumstances make it possible for them to φ.

What is the connection between the two notions? Some, e.g. Mandelkern, Schultheis, and Boylan (2017), hold that 'S can φ' expresses specific ability, and that the general reading results from the application of a tacit genericity operator 'Gen'. This is a natural idea, given that general abilities are often called 'general'. (Mandelkern, Schultheis, and Boylan (2017) even call them 'generic'!) The proposal is also tempting for accounts of ability that only directly capture the specific reading. (The locked-in pianist, for example, clearly wouldn't succeed to play the piano if they tried.)

An argument against conditional accounts of ability

Remember the miners problem. Ten miners are trapped in a mine and threatened by rising water. You don't know if they are in shaft A or shaft B, and you can only block off one of the shafts. Let's not ask about what you ought to do, but about what you can do. Specifically, can you save the ten miners?

According to the simple conditional analysis, you can save the miners iff you would succeed if you tried. So what would happen if you tried to save the miners?

I assume you don't actually try to save the ten miners. You keep both shafts open, knowingly causing the shortest miner to drown. Let's assume that (unbeknown to you) the miners are in shaft A. If you tried to rescue the ten miners, you would arbitrarily choose one of the shafts to block. Let's say you would choose shaft A, simply because you like the letter 'A'. You don't think this is relevant: you don't think the miners are any more likely to be in shaft A than in shaft B. But you have to make your choice somehow. Might as well make it based on your irrelevant preference for the letter 'A'.

Chen on our access to the physical laws

Humean accounts of physical laws seem to have an advantage when it comes to explaining our epistemic access to the laws: if the laws are nothing over and above the Humean mosaic, it's no big mystery how observing the mosaic can provide information about the laws. If, by contrast, the laws are non-Humean whatnots, it's unclear how we could get from observations of the mosaic to knowledge of the laws. This line of thought is developed, for example, in Earman and Roberts (2005). Chen (2023) (as well as Chen (2024)) argues that it rests on a mistake. Eddy suggests that Primitivists about physical laws have no more trouble explaining our epistemic access than friends of the Best-System Analysis.

Abilities despite phobias?

A common assumption in discussions of abilities is that phobias restrict an agent's abilities. Arachnophobics, for example, can't pick up spiders. I wonder if this is true, if we're talking about the pure 'can' of ability.

The problem is that 'can' judgements (and 'ability' judgements) are often sensitive to relevant preferences or norms: I might say that I can't come to a meeting (or that I'm not able to come) because I have to pick up my kids from school. This is what I'd call an impure use of 'can'. I don't actually lack the ability to come to the meeting. It's just that doing so would come at too high a cost. Perhaps arachnophobia similarly associates a high cost with picking up spiders.

Paper on unspecific antecedents

A new paper (draft) on counterfactuals with unspecific antecedents, to appear in a festschrift for Al Hájek. The paper discusses a range of phenomena related to the "Simplification of Disjunctive Antecedents". I argue that they can't be explained by a chance-based account of counterfactuals, as Hájek has suggested. Instead, I hint at an RSA-type explanation. I also suggest that this explanation might somewhat weaken the case for counterfactual skepticism.

I regret how much time I have spent on this topic. I first noticed it in 2006, and thought I had a nice explanation. When I posted it on the blog, Kai von Fintel kindly pointed me towards some literature. A little later, Paolo Santorio suggested that my explanation resembles the one in Klinedinst (2007). This seemed right, but I had in mind a more pragmatic implementation. I eventually wrote up my proposal in Schwarz (2021). Although my original interest was sparked by conditionals, that paper focuses on possibility modals, and only briefly mentions how the account might be extended to conditionals. When I got the invitation to write something for Al's festschrift, I thought I could spell out the application to conditionals, and compare it with Al's account. But I couldn't really make it work. So I ended up defending a more orthodox derivation based on Kratzer and Shimoyama (2002).

Logic 2 notes in HTML

It would be nice if my papers and lecture notes were available in HTML, I thought. Let's start with my lecture notes on modal logic (PDF) I thought. I'll need to convert them from LaTeX to HTML, but surely there are tools for that. I thought.

I was right. But ah, LaTeX! There are, of course, multiple options. You can use pandoc. Or tex4ht. Or lwarp. Or LaTeXML. All of them sort of work, after some fiddling and consulting their thousand-page manuals. But none of them support all the packages I use. And shouldn't those gather lists have more line-spacing, etc.?

A fork time puzzle

According to a popular view about counterfactuals, a counterfactual hypothesis 'if A had happened…' shifts the world of evaluation to worlds that are much like the actual world until shortly before the time of A, at which point they start to deviate from the actual world in a minimal way that allows A to happen. 'If A had happened, C would have happened' is true iff all such worlds are C worlds. The time "shortly before A" when the worlds start to deviate is the fork time.

Now remember the case of Pollock's coat (introduced in Nute (1980)). John Pollock considered 'if my coat had been stolen last night…'. He stipulates that there were two occasions on which the coat could have been stolen. By the standards of Lewis (1979), worlds where it was stolen on the second occasion are more similar to the actual world than worlds where it was stolen on the first occasion. Lewis's similarity semantics therefore predicts that if the coat had been stolen, it would have been stolen on the second occasion. This doesn't seem right.

Reasoning about doom

I occasionally teach the doomsday argument in my philosophy classes, with the hope of raising some general questions about self-locating priors. Unfortunately, the usual formulations of the argument are problematic in so many ways that it's hard to get to these questions.

Let's look at Nick Bostrom's version of the argument, as presented for example in Bostrom (2008).

An RSA model of SDA

In this post, I'll develop an RSA model that explains why 'if A or B then C' is usually taken to imply 'if A then C' and 'if B then C', even if the conditional has a Lewis/Stalnaker ("similarity") semantics, where the inference is invalid.

I'll write 'A>C' for the conditional 'if A then C'. For the purposes of this post, we assume that 'A>C' is true at a world w iff all the closest A worlds to w are C worlds, by some contextually fixed measure of closeness.

It has often been observed that the simplification effect resembles the "Free Choice" effect, i.e., the apparent entailment of '◇A' and '◇B' by '◇(A∨B)', where the diamond is a possibility modal (permission, in the standard example). But there are also important differences.

An RSA model of free choice

Let's continue. I'm going to present a new (?) model of free choice. Free choice is the phenomenon that a disjunction embedded in a possibility modal conveys the possibility of both disjuncts. 'You may have tea or coffee', for example, conveys that you may have tea and you may have coffee. Champollion, Alsop, and Grosu (2019) present an RSA model of this effect, drawing on the "lexical uncertainty" account from Bergen, Levy, and Goodman (2016). I'll present a model that does not rely on lexical uncertainty.

< 776 older entriesHome7 newer entries >